Mandelbrot, el matemático que inventó la geometría fractal, la que permite medir fenómenos naturales antes inaccesibles, como las nubes o las líneas de la costa fallece el jueves 14 de octubre de 2010, a consecuencia de un cáncer.
El matemático desarrolló en los años setenta los objetos fractales, una nueva clase de objetos matemáticos que fueron juzgados "monstruosos" por cierto número de sus colegas, según sus propias palabras. Pero sus descubrimientos tuvieron aplicación en numerosos campos, como la geología, la medicina, la astronomía y la ingeniería, sin olvidar las finanzas y la anatomía.
El término fractal, del latín fractus (roto), fue acuñado por Mandelbrot en 1975. En el ICM2006 explicó: "Salvo unas pocas excepciones, como el ojo o la Luna, las formas de la naturaleza son rugosas, irregulares, no homogéneas ni simples. Y [hasta el estudio matemático de los fractales] las matemáticas se han concentrado siempre en figuras simples. Me siento muy afortunado por trabajar en las matemáticas de lo irregular".
"Los fractales, es fácil, son como una coliflor romanesco [una variedad de coliflor con formas simétricas]. Esto quiere decir que cada pequeño trozo es exactamente como la coliflor de sí misma. Es una curva que se reproduce hasta el infinito. Cuando se ve el objeto desde más cerca se encuentra la misma curva", ha explicado Catherine Hill, estadística del Instituto Gustave Roussy, en Villejuif, cerca de París.
La relación de los fractales con el infinito es peculiar, explica el proyecto i-Math. Lo ilustra la llamada paradoja de la costa. Quien intente medir el litoral obtendrá un resultado distinto en función del grado de detalle al que aspire: si tiene en cuenta sólo el contorno de las bahías o si va midiendo cada roca, cada piedrecita, cada grano de arena... En un fractal ideal el litoral - cualquier contorno rugoso, en realidad- llegaría a hacerse infinito.
Esta propiedad hace que los fractales no quepan en la geometría y el cálculo convencionales. Ha habido que crear para ellos matemáticas nuevas. Por ejemplo, resulta que los fractales tienen dimensión fraccionaria. Una curva no rugosa -no fractal-, tiene dimensión 1. Una superficie, como un cuadrado, tiene dimensión 2. Pero ¿qué pasa con una curva fractal (los matemáticos llaman curva a cualquier cosa que se dibuje sin levantar el lápiz)? Una curva fractal es infinita, y a pesar de eso no llena superficie alguna... La solución matemática de esta rareza pasa por dar a los fractales una dimensión mayor que uno y menor que dos, esto es, un número fraccionario.
Antenas fractales y otras aplicaciones
En las últimas décadas los fractales han invadido múltiples ámbitos, como explicaba el propio Mandelbrot en Madrid: "Piensa en las antenas: en muchos dispositivos modernos las antenas son fractales porque son mucho más eficientes. O en las paredes de las casas; si fueran fractales absorberían el ruido, y de hecho ya hay patentes de muros fractales con textura rugosa que absorbe el ruido en vez de reflejarlo".
La lista de ejemplos es larga: un nuevo cemento basado en materiales fractales que impiden que el agua entre y deteriore la estructura del edificio; elementos de microelectrónica con estructura fractal... "La tradición era pensar en formas suaves; al romper esta tradición, los fractales se están volviendo cada vez más útiles", dijo Mandelbrot.